
B. Saby/P. Guillemin

 APPLICATION NOTE
3-PHASE MOTOR DRIVE USING THE ST9

MULTI-FUNCTION TIMER AND DMA

AN428 / 06,92

INTRODUCTION

3-phase induction motors are growing in popularity. Nevertheless, their maximum
efficiency is achieved with a variable voltage and variable frequency drive through a
bridge inverter (see Figure 1). The 6 power switches of the inverter require complex
command sequences in order to approximate the 3 sine waves with a good accuracy.
This is generally achieved by using a dedicated analog or digital IC, supervised by a
standard microcontroller.
This application note presents an innovative single-chip solution taking advantage of
the on-chip DMA of the ST9 family of microcontrollers. The DMA channel of the ST9
multi-function timers can be diverted to a 8-bit I/O port. This allows the ST9 to perform
as pattern generator. Different patterns are used to drive the 6 power switches in order
to generate various voltages and frequencies.

Figure 1. 3-Phase bridge inverter

Note :For abetterunderstanding of this ApplicationNote, it is strongly recommended to refer to the technical
note “External DMA mode: I/O data transfer synchronized by Timer” for a detailed description of the DMA
data transfer. Chapter 10 of “ST9 Technical Manual” provides all the details about the timer’s internal
registers, interrupt and DMAflags. Chapter 9 of this manual provides the details about the DMA I/O port
configuration.

1/25

PULSE WIDTH MODULATION (PWM) GENERATION

Figure 2. Staircase approximation of
the 3 phase sine waves

The 3 sine waves are digitalized, using a
“staircase approximation” (see Figure 2).
In the present example, there are 24
period segments (24 “stairs”) for one pe-
riod of the approximated sine wave.
Each segment corresponds to an aver-
age voltage value during the segment
duration (see Figure 3): this voltage is
generated by the power switches of each
half-bridge of the inverter, using a PWM
technique. The duration of each segment
is a multiple of the elementary PWM
switching period. Therefore, it is very
easy to set the period of the generated
sine waves by modifying the segment
duration.

The elementary switching period is sub-
divided into elementary time slots during
which all 6 switches of the inverter are in
a given state (“on” or “off”). The state of
the switches can be represented with 6
bits stored in a byte: 1 = “on”, 0 = “off”.
Hence, a switching period can be repre-
sented with a pattern, i.e. a sequence of
bytes corresponding to the different time
slots (42 time slots in our example).
Each segment of the 3-phase sine waves
can be represented with a defined aver-
age voltage during this segment on each
of the 3 phases, and therefore with a
given pattern. There must be as many
differentpatterns as period segments (24
segments in our example).

Note: the number of period segments must be a
multiple of 3, as the 3 sine waves present the same
amplitude with a phase shift of one third of a period
between each other.

1 2 3 4 5 6 7 8 9 101112131415161718192021222324

110

100

90

80

70

60

50

40

30

20

10

0

Figure 3. Period Segments and Aver-
age Voltage (in % of V CC)



3-PHASE MOTOR DRIVE USING THE ST9 TIMER AND DMA

2/25

During a period segment, this pattern can be repeated several times; then the period
segments can have a variable duration, a multiple of the elementary switching period.
Thus it is possible to generate the same sine waves (i.e. same voltage) with different
frequencies (see Figure 4 and Figure 5).

1 3 5 7 9 11131517192123252729313335373941434547

110

100

90

80

70

60

50

40

30

20

10

0

Figure 4. One pattern repetition per
segment

1 2 3 4 5 6 7 8 9 101112131415161718192021222324

110

100

90

80

70

60

50

40

30

20

10

0

Figure 5. Two patterns per segment

time slot duration (same state for all 6switches): 4.75 µs

number of time slots per elementary switching period : 42 time slots

elementary switching period (one pattern) : 199.5 µs

period segment duration (average voltage constant on the 3 phases:

n patterns (n = 1,2,3...), i.e. n x 199.5 µs

sine wave period : m = 24 period segments = 24 x n x 199.5 µs = n x 4.788 ms

sine wave frequency :
1

n x 4.788
kHz

for n = 1 : the frequency is F = 208.86 Hz

for n = 20 : the frequency is F = 10.44 Hz

Table 1. Sine wave subdivision summary



3-PHASE MOTOR DRIVE USING THE ST9 TIMER AND DMA

3/25

ST9 DIRECT MEMORY ACCESS (DMA)

One of the unique features of the ST9 family of microcontrollers consists of a DMA
capability between its memory and its on-chip peripherals, including the Multifunction
Timers. On top of that, one 8-bit I/O port can be coupled with one timer’s DMA channel
for fast data transfers between memory and the I/O port with minimum CPU overhead.
The data transfers are scheduled by the timer (see Figure 6).
This DMA feature allows the transfer of a complete pattern of bytes without any
software intervention. Two registers are used by the DMA logic: the DMA address
pointer holds the address of the pattern stored in the program memory of the ST9 and
is incremented after each DMA transfer, thus pointing to the next byte of the pattern;
the DMA counter holds the total number of bytes in a pattern (here: 42 bytes) and is
decremented after each DMA transfer.

Figure 6. DMA output on I/O port with timer compare mode

When the DMA counter is decremented down to zero, an “End of Block” interrupt
request is generated. During the interrupt servicing routine, the DMA address pointer
and DMA counter should be reloaded with new values corresponding to the next
pattern (or the same pattern, if it is repeated several times). As this operation takes
some time, it can create an undesired delay in the process of data transfer to the I/O
port: in our application example, a DMA cycle should occur every time slot, i.e. every
4.75 µs.



3-PHASE MOTOR DRIVE USING THE ST9 TIMER AND DMA

4/25

In order to achieve this data throughput without imposing a stringent interrupt
response time for the End of Block interrupt, an extra feature of the DMA channel of
the timer unit is used: the swap mode. When operating in swap mode, the DMA
channel uses 2 address pointers and 2 counters in the following way: while a pair of
pointer/counter is used for DMA transfers, the other pair can be loaded with the
appropriate values corresponding to the next pattern to be transfered. Once the last
byte of the current pattern is transfered (DMA counter decremented down to zero), an
interrupt request is generated, as in the regular mode; in addition, the DMA channel
automatically switches to the other pair of DMA pointer/counter and therefore is
immediately ready to start a new sequence of DMA transfers.
During the interrupt service routine, the software reloads the “old” pair of
pointer/counter with the next pattern address and length. Using the swap mode
provides a major advantage in this application because the DMA data transfers are
never interrupted: this is essential to achieve a good accuracy in the 3 sine waves
reconstitution.
The major advantage of using the DMA is that the ST9 microcontroller is available for
other tasks of control or calculation, as the DMA operation does not require any
software intervention except during the End of Block interrupt, i.e. every 200µs.



3-PHASE MOTOR DRIVE USING THE ST9 TIMER AND DMA

5/25

ST9 SOFTWARE

In order to generate the 3-phase sine waves, the following software routines are
needed:
- a routine to initialize the timer and the I/O port in the desired configuration. Note: on
the ST9030 used in the present example, the DMA I/O operation is available on Port
5 coupled with the Multifunction timer 1 (cf. the technical note “External DMA mode:
I/O data transfer synchronized by Timer”).
- a routine to start the timer and the DMA operation when the 3-phase motor must be
started.
- a routine to stop the timer and DMA when the motor must be stopped.
- the DMA End of Block interrupt routine where the DMA pointer and counter are
reloaded with new values.
Two kinds of information are also needed in order to generate 3-phase sine waves at
a given voltage and frequency:
Information for defining the voltage:
- the number of period segments per sine wave period (24 segments in our example).
Each segment requires a specific pattern of 42 bytes stored in the ST9030’s program
memory (ROM memory).

Address:

N m = segments per period

N + 1 Address of pattern #1
(2 bytes)

N + 2

...

N + 1*m Address of pattern #m
(2 bytes)

Table 2. Descriptor structure
- the addresses of the different patterns.
There are 24 patterns (one per period
segment) for a given voltage of the sine
waves, i.e. 24 x 42 = 1008 bytes.
All this information is stored in a small
ROM table named a descriptor. There is
one descriptor table for each given volt-
age/frequency operation of the motor.
The descriptor structure is as follows
(see Figure 7):
- the first byte is the number of period
segments for a complete sine wave pe-
riod: m = 24 in this example.
- the followingbytes are the addresses of
the patterns (16-bit words), beginning
with the address of pattern #1 and finish-
ing with the address of pattern #m.



3-PHASE MOTOR DRIVE USING THE ST9 TIMER AND DMA

6/25

INFORMATION FOR DEFINING THE FREQUENCY:

- the number of repetitions of an elementary switching period (represented by one
pattern) during a period segment.
- the timer duration defining the DMA frequency.
This information is stored in a table in ROM called FREQ_TABLE.
When operating the motor at agiven voltage and frequency, all the needed parameters
are loaded from the corresponding descriptor and from the frequency table. The
following registers are used in the software example:
curr_speed : holds the address N (16-bit) of the current descriptor.
patt_count : holds the pattern repetition number n (first byte of the descriptor) and is
decremented upon each repetition of the current pattern.
patt_nb : holds the total period segments number m (second byte of the pattern) and
is decremented upon each new segment.
patt_point : points to the descriptor position where the address of the current pattern
(16-bit) is stored. It is incremented by two upon each new segment in order to point
to the next pattern address.
next_cmp_t1 : holds the next value for the comparizon event on Timer 1; fixes the
DMA frequency and therefore associated with the repetition number, the frequency of
the three-phase sine waves.
rep_nb : holds the pattern repeptition number. This is an image of patt_count.
dma_buff0 : first DMA address pointer (16-bit). When starting the motor, this register
pair is loaded with the address of the first pattern (pointed by patt_point). It is
incremented upon each DMA transfer.
dma_count0 : first DMAcounter (16-bit). When starting a new pattern with dma_buff0,
this register pair is loaded with the number of bytes in the pattern (42 bytes in this
example).
dma_buff1 : second DMA address pointer.
dma_count1 : second DMA counter.
The timer is operated in “count up” mode. The desired value for the time-slots between
2 consecutive DMA transfers (4.75µs) is loaded into the COMPARE 0 register of the
timer; a “clear on COMPARE 0” is also enabled, so it will restart from the beginning
upon each successful COMPARE 0. The DMA channel is set to operate in conjunction
with the COMPARE 0 event.
When transfering data, the DMA channel toggles between dma_buff0/dma_count0
and dma_buff1/dma_count1, as indicated by bit 2 of the the DCPR register of the
timer. When servicing the DMA End of Block interrupt, the routine must check which
of the 2 DMA pointers is in use and reload the other one, as detailed in Figure 8, and
then reset the interrupt flag and return to the main program.



3-PHASE MOTOR DRIVE USING THE ST9 TIMER AND DMA

7/25

decrement patt_count (pattern repetition)

decrement patt_nb (segment number)

- patt_point set to the first pattern

(address N+1).

- patt_nb reloaded with value ”m”

patt_point set to the next pattern

patt_count reloaded with value ”rep_nb”

(number of period segments)

test which pair of DMA pointer
and counter is in use

- reload dma_buff1 with the address

pointed by patt_point (next pattern).

- reload dma_count1 with the content pointed

- reload dma_buff0 with the address

- reload dma_count0 with the content pointed

pointed by patt_point (next pattern).

- Return from interruption

if zero

if zero

if not zero

if not zero

VR001591

if buffer 0

if buffer 1

- clear timer 1
- update Compare 0 register
for new DMA frequency

by patt_point (pattern length)

by patt_point (pattern length)

- reset End of Block DMA flag

Figure 7. DMA End of Block interrupt routine



3-PHASE MOTOR DRIVE USING THE ST9 TIMER AND DMA

8/25

SUMMARY

Using the ST9 DMA on I/O port to drive a 3-phase induction motor presents several
advantages compared to conventional solutions. First, the ST9 is able to generate the
6 command sequences for the bridge inverter without any additional hardware or
dedicated circuits, just by using its standard features.
In addition, the patterns used to set up the command sequences are prepared by the
user. This gives the possibility to generate sophisticated command sequences for any
particular purpose, as, for instance, to reduce the noise by dephasing the switching
of the currents in the 3 phases.
First tests have shown that the DMA operation, including the interrupt routines,
accounts for approximatively 35 % to 40 % of the total available CPU time of the ST9
when operating at its maximum speed (12 MHz internal clock). Conventionnal
microcontrollers should spend almost all their time at transfering all the bytes of the
patterns to the I/O port at a rate of one byte every 4.75 µs. The ST9 microcontrollers
can do this using their DMA channel, with 60 % or more of their processing power
available for other tasks such as speed regulation, temperature supervision, keyboard
input. This solution is cost effective, even when compared with a low end microcon-
troller plus a dedicated circuit.
In our example, a complete set of patterns (for one given voltage) occupies approxi-
matively 1 K bytes in the ROM memory. This is low, especially when considering that
standard ST9 ROM sizes range from 8 K to 32 K bytes.
As a conclusion, it can be said that this cost effective solution provides new technical
possibilities in the 3-phase motor drive, thanks to the DMA feature and the flexibility
of the ST9 microcontroller family.

Bibliography:
- Versatile and cost effective induction motor drive with three phase digital generation,
B.MAURICE/JM.BOURGEOIS/B.SABY, PCIM 1991, Nürnberg.
- External DMA mode: I/O data transfer synchronized by Timer, P.GUILLEMIN,
technical note, SGS-THOMSON Microelectronics 1990.
- ST9 family 8/16 bit MCU Technical Manual, SGS-THOMSON Microelectronics 1990.



3-PHASE MOTOR DRIVE USING THE ST9 TIMER AND DMA

9/25

.title “Three-phase motor control with DMA I/O”

.list

;The timer 1 is programmed in COMPARE0 DMA channel EXT mode

;********************************* *

;*INTERRUPT VECTOR ADDRESSES *

;********************************* *

CORE_IT_VECT := 00h ; Core interrupt vectors

T1_IT_VECT := 08h ; Timer 1 interrupt vectors

COMP_IT_VECT := 6 ; COMPARE event interrupt address

T1_LEVEL := 1 ; Timer 1 priority level

;*** *

; Register working groups definition *

;*** *

BK_0 := 0 * 2 ;working group 0

BK_1 := 1 * 2 ;working group 1

BK_2 := 2 * 2 ;working group 2

BK_3 := 3 * 2 ;working group 3

BK_4 := 4 * 2 ;working group 4

BK_5 := 5 * 2 ;working group 5

BK_6 := 6 * 2 ;working group 6

BK_7 := 7 * 2 ;working group 7

BK_8 := 8 * 2 ;working group 8

BK_9 := 9 * 2 ;working group 9

BK_A := 10 * 2 ;working group A

BK_B := 11 * 2 ;working group B

BK_C := 12 * 2 ;working group C

BK_D := 13 * 2 ;working group D

BK_E := 14 * 2 ;working group E

BK_F := 15 * 2 ;working group F

;********************************* *

; Stack definition *

;********************************* *

SSTACK := 0E0h ;system stack: group C and D

USTACK := 0C0h ;user stack: group B

Annex A. Software example



3-PHASE MOTOR DRIVE USING THE ST9 TIMER AND DMA

10/25

;***

; DMA and pattern control registers *

;***

; DMA pointers and counters (swap mode)
; *************************************

T1_DMA := BK_8 ;Timer 1 DMA group

LG_DMA = 42 ;length of DMA

AD_DMA := 082H ;DMA pointer reg. nb

CT_DMA := 08AH ;DMA counter reg. nb

dma_buff0 = rr2 ;buffer 0 pointer

DMA_buff0 :== RR#AD_DMA

dma_count0 = rr10 ;buffer 0 counter

DMA_count0 :== RR#CT_DMA

dma_buff1 = rr6 ;buffer 1 pointer

DMA_buff1 :== RR#AD_DMA+4

dma_count1 = rr14 ;buffer 1 counter

DMA_count1 :== RR#CT_DMA+4

; Patterns pointers and counters

; ******************************

Speed := BK_A ;working group 10

CURR_SPEED :== RR#0A0h ;speed descriptor

curr_speed = rr0 ;speed descriptor

PATT_POINT :== RR#0A4h ;pattern pointer in the list

patt_point = rr4 ;pattern pointer in the list

REP_nb :== R#0A7h ;pattern repetition number

rep_nb = r7

PAT_COUNT == R#0A8h ;current pattern repetition

patt_count = r8 ;current pattern repetition

pATT_NB :== R#0A9h ;number of patterns for 1 period

patt_nb = r9 ;number of patterns for 1 period



3-PHASE MOTOR DRIVE USING THE ST9 TIMER AND DMA

11/25

NEXT_CMP_T1 :== R#0AEh ; next value of Timer 1

next_cmp_t1 = r14 ; Compare 0 register

;*************************

;*START of PROGRAM *

;*************************

START_OF_CODE := 20h ; start address program

;*** *

;*Declaration of the interrupt vectors table *
;*** *

.text ; start of program

.org CORE_IT_VECT ; Core interrupt vector

; *********************

.word RESET_START ; power on interrupt vector

.org T1_IT_VECT ; Timer 1 interrupt vectors

; *************************

.org T1_IT_VECT + 6 ; unused addressses

.word COMPARE0 ; Timer 1 compare 0 interrupt

;*************************

; Timer 0 int vectors *

;*************************

;timer 0 interrupt vector

.word R_UDFLW_T0 ;underflow timer 0

;*************************

;*Start of main module *

;*************************

.org START_OF_CODE ;start of code



3-PHASE MOTOR DRIVE USING THE ST9 TIMER AND DMA

12/25

RESET_START::

clr P5DR ; port 5: all zeros

ld MODER,#11100000b ; CLOCK MODE REGISTER

; internal stack

; no clock prescaling

ld CICR,#10001111b ; CENTRAL INTERRUPT CONTROL REGISTER

; priority level = 7

; Nested Arbitration mode

; disable interrupt

; enable counters

; At reset, Global Counter Enable bit is

; active.

spm ; use program memory

ld SSPLR,#SSTACK ; load system stack pointer

ld USPLR,#USTACK ; load user stack pointer

call TIMER_1 ; Timer 1 initialization in DMA mode

call INIT_IO ; Port 5 initialization in DMA mode

ei ; enable all interrupts

;***********************

;* MAIN PROGRAM *

;***********************

loop {

; During the main loop, the motor can be started by loading the address of

; the appropriate descriptor into “curr_speed” register pair and calling

; the “START_T1” routine.

; It can be stopped by calling the “STOP_T1” routine.

}



3-PHASE MOTOR DRIVE USING THE ST9 TIMER AND DMA

13/25

;***
;* initialize TIMER 1 *
;***

proc TIMER_1 {

srp #BK_F ; select paged working reg.

spp #T1D_PG ; select timer 1 reg. page

ld t_tmr,#oe0 ; Disable output B

; Enable out A

; Internal clock

; Countinuous mode

ld t_tcr,#(ccl | ccmp0 | udc) ; clear counter

; count up

; clear on compare 0

clr t_icr ; No action on input pins

clr t_prsr ; No prescaling

ld t_oacr,#(ou_nop | c1_nop | c0_tog) ; Toggle OUTPUT0 on

; Compare 0

ld t_obcr,#(c0_nop | c1_nop | ou_nop) ; No action on OUTPUT1

clr t_flagr

spp #T1C_PG ; Timer 1 Control page reg.

ld t1_dcpr,#CT_DMA ; DMA count. reg. base addres

ld t1_dapr,#AD_DMA ; DMA add. reg. base addres

ld t1_ivr,#T1_IT_VECT ; load interrupt vect.

ld t1_idcr,#(T1_LEVEL | dctd | swen) ; DMA compare,

; swap enable

spp #T1D_PG ; Timer 1 Data page

ld t_idmr,#(gtien | cm0i | cm0d) ; Compare 0 INT and DMA

ldw t_reg0r,#0 ; reg 0

}

;**

;* TIMER 1 COMPARE 0 INTERRUPT ROUTINE *

;* DMA Interrupt End of block *
;**

COMPARE0:

begin [PPR,RP0R] { ; save page pointer

; save register pointer



3-PHASE MOTOR DRIVE USING THE ST9 TIMER AND DMA

14/25

srp #Speed ; speed control working regs.

spp #T1D_PG ; timer 1 data page

or T_TCR,#ccl ; Clear counter

ld T_CMP0LR,next_cmp_t1 ; update compare 0 register

; for new freq. in slope

; generation

spp #T1C_PG ; timer 1 control page

and T1_IDCR,#~(cme) ; reset EOB DMA condition

dec patt_count ; decrement repetition counter

if [SETZ] { ; when finished,

dec patt_nb ; see next pattern.

if [SETZ] { ; if end of table

ldw patt_point,curr_speed ; restart from the beginning

ld patt_nb,(patt_point) ; read number

} else {

incw patt_point ; skip first byte

}

incw patt_point ; see next pattern.

ld patt_count,rep_nb ; reload pattern rep. count

}

tm T1_DCPR,#00000100b ; test if buffer 0 in use

if [SETZ] { ; if buffer 0,...

ldw DMA_buff1,(patt_point) ; load pattern address in buffer 1
ldw DMA_count1,#LG_DMA ; load count

} else { ; if buffer 1,...

ldw DMA_buff0,(patt_point) ; load pattern address in buffer0
ldw DMA_count0,#LG_DMA ; load count

}

} ; end begin

iret ; return from interrupt



3-PHASE MOTOR DRIVE USING THE ST9 TIMER AND DMA

15/25

;**

; I/O port initialization *

;**

; Set port 5 to I/O DMA mode

; **************************

proc INIT_IO [PPR,RP0R] {

srp #BK_F ; select paged working register

spp #P5C_PG ; Port 5 control register page

; Port 5 in DMA mode

; Port 5 Handshake disabled

; Dma on Compare 0 channel

; 76543210

ld p5c0r,#00000000b

ld p5c1r,#11111111b

ld p5c2r,#00000000b

ld hdc5r,#(hsdis | den | ddw | dcm0)

}

;***********************

;*Stop Timer 1 routine *

;***********************

proc STOP_T1 [PPR]{

spp #T1D_PG ;Timer 1 data page

clr T_TCR ;stop timer

clr T_FLAGR ;clear pending interrupts

clr P5DR ;port 5 = 0 to stop the motor

}



3-PHASE MOTOR DRIVE USING THE ST9 TIMER AND DMA

16/25

;****************************

;*Start Timer 1 routine *

;****************************

proc START_T1 [RP0R,PPR]{

srp #BK_F

spp #T1C_PG ;timer 1 control page

ld t1_dcpr,#CT_DMA ; dma counter register base addres

ld t1_dapr,#AD_DMA ; dma address register base addres

srp #Speed ;motor control registers

ldw patt_point,curr_speed ; start from the beginning of

; the descriptor

incw patt_point ; skip first byte

ld patt_nb,(patt_point) ; read number of patterns

incw patt_point ; see first pattern.

ldw dma_buff0,(patt_point) ; load pattern address into first

; DMA buffer

ldw dma_count0,#LG_DMA ; load byte count (42 bytes)

ld patt_count,(curr_speed) ; load pattern repetition count

dec patt_count ; decrement repetition counter

if [SETZ]{ ; if only one repetition per

; segment,

dec patt_nb ; see next pattern.

incw patt_point ; point to next pattern.

incw patt_point

ld patt_count,(curr_speed) ;reload pattern repetition

; counter

}



3-PHASE MOTOR DRIVE USING THE ST9 TIMER AND DMA

17/25

ldw dma_buff1,(patt_point) ; load the second pattern address

; into buffer 1

ldw dma_count1,#LG_DMA ; load byte count

spp #T1D_PG ;Timer 1 data page

clr T_FLAGR ;clear pending interrupts

or T_TCR,#(cen | ccl | ccmp0 | udc) ; counter enable bit

; clear counter

; count up

; clear on compare 0

}

;**
;* Procedure Set_freq

;* Input: - offset_fil contains frequency location in FREQ_TABLE

;* Output: - rep_nb and next_cmpt1l updated from FREQUENCY TABLE

;* Modified: - rep_nb, PPR, next_cmp_t1l
;**

proc Set_freq {

beginw [curr_slope] {

ldw curr_slope,#FREQ_TABLE ; Pointer on FREQ. table

clr offset_fih

addw curr_slope,offset_fi

addw curr_slope,offset_fi

ld rep_nb,(curr_slope)+ ; load number of repetition
ld next_cmp_t1,(curr_slope); for new Timer 1 compare 0

;reg.

}

}



3-PHASE MOTOR DRIVE USING THE ST9 TIMER AND DMA

18/25

;*** *

;*New pattern: 100 % of Vcc: sine centered *
;*** *

.global PATT_10B

PATT_10B:

.byte 24 ;24 different patterns for one period

.word P_10B_A, P_10B_B, P_10B_C, P_10B_D

.word P_10B_E, P_10B_F, P_10B_G, P_10B_H

.word P_10B_I, P_10B_J, P_10B_K, P_10B_L

.word P_10B_M, P_10B_N, P_10B_O, P_10B_P

.word P_10B_Q, P_10B_R, P_10B_S, P_10B_T

.word P_10B_U, P_10B_V, P_10B_W, P_10B_X

;1.0 1

;******

P_10B_A:

.byte 000101b

.byte 100101b

.byte 100101b

.

.

.

.byte 100101b

.byte 100101b

.byte 100101b

.byte 000101b

;1.0 2

;******

P_10B_B:

.byte 010101b

.byte 000101b

.byte 100101b

.

.

.

Annex B. Pattern Definition Example



3-PHASE MOTOR DRIVE USING THE ST9 TIMER AND DMA

19/25

;1.0 24

;******

P_10B_X:

.byte 000101b

.byte 100101b

.

.

.



3-PHASE MOTOR DRIVE USING THE ST9 TIMER AND DMA

20/25

;***

;* Define global and external references *
;***

.global FREQ_TABLE

;***
;* FREQUENCIES TABLE

;*

;* This table give all the possible frequencies available according to the
;* number of pattern repetition and to the Timer 1 Compare 0 value.

;* Take care to the Timer 1 Compare value: according to the Timer

;* programmation

;* the Compare 0 register must be loaded with 0 (instead of 1) to reach the
;* minimal counting value (= 250ns). So the Timer duration given in the

;* following table is (DMA frequency / Timer resolution) - 1.

;* This table must accessed giving the frequency location within the table,
;* for location 6 correspond to 153 Hz with a timer Compare 0 value egal to
;* 3.25 s
;***

FREQ_TABLE: ; pattern repetition + TIMER 1 duration

.byte 1, (4750/250) - 1 ; 208 Hz 4.75 s

.byte 1, (5000/250) - 1 ; 198 Hz from 208 Hz: 5.00 s

.byte 1, (5250/250) - 1 ; 189 Hz “ 208 Hz: 5.25 s

.byte 1, (5500/250) - 1 ; 180 Hz “ 208 Hz: 5.50 s

.byte 1, (5750/250) - 1 ; 172 Hz “ 208 Hz: 5.75 s

.byte 1, (6000/250) - 1 ; 165 Hz “ 208 Hz: 6.00 s

.byte 1, (6250/250) - 1 ; 159 Hz “ 208 Hz: 6.25 s

.byte 2, (3250/250) - 1 ; 153 Hz “ 104 Hz: 3.25 s

.byte 2, (3500/250) - 1 ; 142 Hz “ 104 Hz: 3.50 s

.byte 2, (3750/250) - 1 ; 132 Hz “ 104 Hz: 3.75 s

.byte 2, (4000/250) - 1 ; 124 Hz “ 104 Hz: 4.00 s

.byte 2, (4250/250) - 1 ; 117 Hz “ 104 Hz: 4.25 s

.byte 2, (4500/250) - 1 ; 110 Hz “ 104 Hz: 4.50 s

.byte 2, (4750/250) - 1 ; 104 Hz 4.75 s

.byte 2, (5000/250) - 1 ; 99 Hz “ 104 Hz: 5.00 s

.byte 2, (5250/250) - 1 ; 94 Hz “ 104 Hz: 5.25 s

.byte 2, (5500/250) - 1 ; 90 Hz “ 104 Hz: 5.50 s

.byte 2, (5750/250) - 1 ; 86 Hz “ 104 Hz: 5.75 s

.byte 3, (4000/250) - 1 ; 82 Hz “ 70 Hz: 4.00 s

.byte 3, (4250/250) - 1 ; 78 Hz “ 70 Hz: 4.25 s

Annex C. Frequency Table Definition



3-PHASE MOTOR DRIVE USING THE ST9 TIMER AND DMA

21/25

.byte 3, (4500/250) - 1 ; 73 Hz “ 70 Hz: 4.50 s

.byte 3, (4750/250) - 1 ; 70 Hz 4.75 s(21)

.byte 3, (5000/250) - 1 ; 66 Hz “ 70 Hz: 5.00 s

.byte 3, (5250/250) - 1 ; 63 Hz “ 70 Hz: 5.25 s

.byte 4, (4000/250) - 1 ; 62 Hz “ 52 Hz: 4.00 s

.byte 4, (4250/250) - 1 ; 58 Hz “ 52 Hz: 4.25 s

.byte 4, (4500/250) - 1 ; 55 Hz “ 52 Hz: 4.50 s

.

.

.

.byte 11, (4750/250) - 1 ; 19 Hz 4.75 s (42)

.byte 12, (4750/250) - 1 ; 17.4 Hz 4.75 s (43)

.byte 13, (4750/250) - 1 ; 16 Hz 4.75 s (44)

.byte 14, (4750/250) - 1 ; 15 Hz 4.75 s (45)

.byte 15, (4750/250) - 1 ; 14 Hz 4.75 s (46)

.byte 16, (4750/250) - 1 ; 13 Hz 4.75 s (47)

.byte 17, (4750/250) - 1 ; 12 Hz 4.75 s (48)

.byte 18, (4750/250) - 1 ; 11.6 Hz 4.75 s (49)

.byte 19, (4750/250) - 1 ; 11 Hz 4.75 s (50)

.byte 20, (4750/250) - 1 ; 10.4 Hz 4.75 s (51)

.byte 22, (4750/250) - 1 ; 9 Hz 4.75 s (52)

.byte 26, (4750/250) - 1 ; 8 Hz 4.75 s (53)

.byte 30, (4750/250) - 1 ; 7 Hz 4.75 s (54)

.byte 35, (4750/250) - 1 ; 6 Hz 4.75 s (55)

.byte 42, (4750/250) - 1 ; 5 Hz 4.75 s (56)

.byte 52, (4750/250) - 1 ; 4 Hz 4.75 s (57)

.byte 70, (4750/250) - 1 ; 3 Hz 4.75 s (58)

.byte 104, (4750/250) - 1 ; 2 Hz 4.75 s (59)

.byte 209, (4750/250) - 1 ; 1 Hz 4.75 s (60)



3-PHASE MOTOR DRIVE USING THE ST9 TIMER AND DMA

22/25

Bridge inverter Power converter generating 3-phase sine
waves from a DC power supply
(see Figure 1, Page 3).

COMPARE 0 Register pair of the ST9 timer to which the
timer’s contents are compared upon each
increment; a successful compare event
triggers the DMA transfer to the I/O port.

Descriptor Small table containing all the parameters for
a given voltage and frequency of the
3-phase sine waves (see Figure 7, page 9).

DMA Direct Memory Access, a technique used in
microprocessor systems where the peri-
pherals can transfer data to and from the
memory without requiring any software
intervention.

DMA counter Register pair containing the number of
remaining bytes to be transfered by the
DMA channel.

DMA pointer Register pair containing the address of the
next byte to be transfered by the DMA
channel.

Elementary switching period Repetition period of the PWM.

End of Block interrupt Interrupt request generated by the DMA
control logic once a complete pattern of
bytes has been transfered.

I/O port 8-bit parallel port of the ST9 microcontroller;
one of these I/O ports can be coupled
to the DMA channel of a timer.

Annex D. Glossary



3-PHASE MOTOR DRIVE USING THE ST9 TIMER AND DMA

23/25

Pattern A sequence of bytes describing an elementary
switching period.

Period segment A part of the sine wave period during
which the average voltage is kept constant
on all 3 phases.

PWM Pulse Width Modulation, a technique used
to generate an average voltage by switching the
bridge output alternatively to Vcc and ground.

ROM Read Only Memory, non-volatile memory of the
ST9 microcontroller into which the ST9 program
and the patterns are stored.

Swap mode An extra feature of the ST9 DMA channel that allows
continuous data transfers.

Time slot Time interval between two DMA transfers during
which the 6 switches of the inverter remain in
a constant state.



3-PHASE MOTOR DRIVE USING THE ST9 TIMER AND DMA

24/25

Information furnished is believed to be accurate and reliable. However, SGS-THOMSON Microelectronics assumes no
responsability for the consequences of use of such information nor for any infringement of patents or other rights of third
parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights
of SGS-THOMSON Microelectronics. Specifications mentioned in this publication are subject to change without notice.

This publication supersedes and replaces all information previously supplied.
SGS-THOMSON Microelectronics products are not authorized for use as critical components in life support devices or

systems without the express written approval of SGS-THOMSON Microelectronics.

 1994 SGS-THOMSON Microelectronics - All rights reserved.

Purchase of I2C Components by SGS-THOMSON Microelectronics conveys a license under the Philips I2C Patent.
Rights to use these components in an I2C system is granted provided that the system conforms to the I2C Standard

Specification as defined by Philips.

SGS-THOMSON Microelectronics Group of Companies
Australia - Brazil - France - Germany - Hong Kong - Italy - Japan - Korea - Malaysia - Malta - Morocco - The Nether-

lands Singapore - Spain - Sweden - Switzerland - Taiwan - Thailand - United Kingdom - U.S.A.

THE SOFTWARE INCLUDED IN THIS NOTE IS FOR GUIDANCE ONLY. SGS-
THOMSON SHALL NOT BE HELD LIABLE FOR ANY DIRECT, INDIRECT OR
CONSEQUENTIAL DAMAGES WITH RESPECT TO ANY CLAIMS ARISING FROM



3-PHASE MOTOR DRIVE USING THE ST9 TIMER AND DMA

25/25

